SEQUENCES OF POWERS IN GENETIC ALGEBRAS

P. HOLGATE

1. Introduction

Certain non-associative algebras have important applications in theoretical Mendelian genetics. The following definitions and summary of the theory are taken from papers by Etherington [2]-[7], who initiated their study. A baric algebra is one which admits a non-trivial homomorphism, $x \rightarrow \omega(x)$, into its coefficient field. $\omega(x)$ is called the weight of x. In this paper we shall only be concerned with commutative algebras over the real numbers. Clearly, the basis of a baric algebra may be so chosen that one of its elements, say c_{0}, has weight unity, and the remainder, c_{1}, \ldots, c_{n} have weight zero. The set of elements of unit weight is closed with respect to multiplication, while the set of elements of zero weight is an ideal N, the nil ideal.

In a non-associative system there is no unambigious k-th power of an element. In genetic algebras the following sequences are important: the principal powers x^{k}, defined by

$$
x^{1}=x, \quad x^{k}=x^{k-1} x,
$$

and the plenary powers $x^{[k]}$ defined by

$$
x^{[1]}=x, \quad x^{[k]}=x^{[k-1]} x^{[k-1]} .
$$

Let the rank equation connecting the principal powers of x be

$$
x^{k}+a_{1} x^{k-1}+\ldots+a_{k-1} x=0 .
$$

In general the a_{i} will depend on x, but if they depend on x only through $\omega(x)$, the baric algebra is called a train algebra, of principal rank k. In view of the baric property this condition is equivalent to requiring that for each element of unit weight, the rank equation should have constant coefficients, and the roots of the corresponding scalar equation

$$
\lambda^{k-1}+a_{1} \lambda^{k-2}+\ldots+a_{k-1}=0
$$

are called the principal train roots of the algebra.
A special train algebra is a baric algebra in which N is nilpotent, and all the principal powers of N are ideals. Such an algebra is necessarily a train algebra.

Suppose that in a train algebra a certain sequence of powers is of interest, perhaps because of some genetic application. The question arises as to whether this sequence also satisfies an equation of degree k^{\prime}, say,
such that for elements of unit weight, the coefficients are constant. If so, the sequence is said to be a train of order k^{\prime}, the equation is called the train equation and the roots of the corresponding scalar equation the train roots of the sequence, for the algebra.

Etherington showed [4], that all train algebras of ranks 1, 2 and 3 are special train algebras, the plenary powers form trains, and determined their plenary train roots. Reiersøl [13], proved that this result holds for algebras corresponding to sets of n linked loci, and showed how the plenary train roots may be computed by recursion with respect to n. In a previous paper [11], I proved the same result for a class of algebras including those corresponding to polysomic inheritance, and showed how their plenary train roots could be computed. In this paper I show that the result holds for all commutative special train algebras containing idempotent elements, and show how the distinct values among their plenary train roots, and upper bounds for their multiplicities may be obtained by recursion on the dimension of the algebra.

2. Definitions

Let A_{n} denote the special train algebra over a space of dimension $n-1$ whose basis in the canonical form obtained in [5] is $c_{0}, c_{1}, \ldots, c_{n}$, in which a typical element of unit weight is

$$
\begin{equation*}
x=c_{0}+u_{1} c_{1}+\ldots+u_{n} c_{n} \tag{1}
\end{equation*}
$$

Its multiplication table in the form given by Gonshor [9] is

$$
\begin{equation*}
c_{i} c_{j}=\sum_{k=0}^{n} \lambda_{i j k} c_{k} \tag{2}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
\lambda_{000}=1 \tag{3a}\\
\lambda_{0 j k}=0, \quad k<j \\
\lambda_{i j k}=0, \quad i, j>0 \text { and } k \leqslant \max (i, j),
\end{array}\right\}
$$

The $\lambda_{0 j j}$ include the principal train roots, possibly with repetitions, and may include $\frac{1}{2}$ even when it is not a principal train root. If A_{n} contains an idempotent, it can be taken as c_{0}, in which case

$$
\begin{equation*}
\lambda_{00 k}=0, \quad k>0 \tag{3b}
\end{equation*}
$$

Conditions for this to be true are given by Gonshor. Henceforth we will assume that the algebra does contain an idempotent. It will often be convenient, without introducing additional notation, to refer to x as a row vector of coefficients, so that the element (1) is denoted by ($1, u_{1}, \ldots, u_{n}$). Let E_{n} be the operator on A_{n} which transforms x into x^{2}. It will be written on the right of the element operated on, to maintain consistency with possible matrix representations, and it will often be equally convenient to think of it as operating on the coefficients u_{i}.

3. Algebras of low rank

A_{1} has multiplication table

	c_{0}	c_{1}
c_{0}	c_{0}	$\lambda_{011} c_{1}$
c_{1}		0

and if $\lambda_{011} \neq \frac{1}{2}$, its plenary train roots are $1,2 \lambda_{011}$. If $\lambda_{011}=\frac{1}{2}$, unity is the unique plenary train root (see [4]). To illustrate the method used in this paper, let us determine the plenary train roots of A_{2} which has multiplication table

	c_{0}	c_{1}	c_{2}
c_{0}	c_{0}	$\lambda_{011} c_{1}+\lambda_{012} c_{2}$	$\lambda_{022} c_{2}$
c_{1}		$\lambda_{112} c_{2}$	0
c_{2}			0.

The square of an element of unit weight is

$$
x E_{2}=x^{2}=c_{0}+2 \lambda_{011} u_{1} c_{1}+\left(2 \lambda_{012} u_{1}+\lambda_{112} u_{1}^{2}+2 \lambda_{022} u_{2}\right) c_{2}
$$

or expressed as a transformation of the u_{i};

$$
\left.\begin{array}{rl}
1 & E_{2} \tag{4}\\
=1 \\
u_{1} E_{2} & =2 \lambda_{011} u_{1} \\
u_{2} E_{2} & =2 \lambda_{012} u_{1}+\lambda_{112} u_{1}^{2}+2 \lambda_{022} u_{2}
\end{array}\right\}
$$

Let us now associate with A_{2} a space B_{2} of vectors ($v_{0}, v_{1}, v_{2}, v_{3}$), and define a mapping R of the plane of unit weight in A_{2} into a variety V_{2} in B_{2} by

$$
\begin{aligned}
\left(1, u_{1}, u_{2}\right) R & =\left(1, v_{1}, v_{2}, v_{3}\right) \\
& =\left(1, u_{1}, u_{1}^{2}, u_{2}\right)
\end{aligned}
$$

E_{2} induces a transformation \hat{E}_{2} of the v_{i};

$$
\begin{aligned}
& 1 \hat{E}_{2}=1 \\
& v_{1} \hat{E}_{2}=2 \lambda_{011} v_{1} \\
& v_{2} \hat{E}_{2}=4 \lambda_{011}^{2} v_{2} \\
& v_{3} \hat{E}_{2}=2 \lambda_{012} v_{1}+\lambda_{112} v_{2}+2 \lambda_{022} v_{3} .
\end{aligned}
$$

This can be extended to a linear transformation of the whole of B_{2} with matrix

$$
\hat{E}_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 \lambda_{011} & 0 & 2 \lambda_{012} \\
0 & 0 & 4 \lambda_{011}^{2} & \lambda_{112} \\
0 & 0 & 0 & 2 \lambda_{022}
\end{array}\right)
$$

The operator E_{2} acting on elements of unit weight in A_{2} can now be seen to correspond to E_{2} acting on their images in B_{2}, in the sense that

$$
\begin{equation*}
\left(x E_{2}\right) R=(x R) \hat{E}_{2} \tag{5}
\end{equation*}
$$

Hence if $f\left(\hat{E}_{2}\right)$ is a polynomial operator which annihilates $B_{2}, f\left(E_{2}\right)$ will annihilate A_{2}. Hence the minimal polynomial of \hat{E}_{2} contains as a factor a polynomial which corresponds to the plenary rank equation of A_{2}. In view of its upper triangular form, it can be seen that the proper values of E_{2}, and hence the plenary train roots of A_{2}, are included in the set 1, $2 \lambda_{011}$, $4 \lambda_{011}^{2}, 2 \lambda_{022}$.

If this set contains superfluous elements, which it will for certain combinations of values of the $\lambda_{i j k}$, it is sometimes possible to modify B_{2}, V_{2}, R and E_{2} so that they are removed from the principal diagonal of \hat{E}_{2}. For instance:
(i) If $\lambda_{011}=\lambda_{022}, 2 \lambda_{011}$ is an unrepeated plenary train root. Hence the last coordinate of B_{2}, and the last row and column of E_{2} can be deleted. (5), and the result, still hold.
(ii) If $\lambda_{022}=\frac{1}{2}$, unity is an unrepeated plenary train root and a similar modification can be made.
(iii) If $\lambda_{112}=0,(4)$ shows that the images of elements of A_{2} will contain no component in v_{2}, which can therefore be deleted from B_{2} and the third row and column from \hat{E}_{2}. In this case $4 \lambda_{011}^{2}$ is not a plenary train root.
(iv) However, if $\lambda_{022}=2 \lambda_{011}^{2}$, there is in general a genuine double plenary train root.

These details may be verified by calculation.

4. Algebras of arbitrary rank

In connection with A_{n} we consider that special train algebra A_{n-1} whose constants $\lambda_{i j k}$ have the same values as those of A_{n} for $i, j, k=0,1, \ldots, n-1$.

Theorem 1. The correspondence H between A_{n} and A_{n-1} determined by

$$
\left(u_{0}, u_{1}, \ldots, u_{n-1}, u_{n}\right) H=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)
$$

is a homomorphism.
Proof. This may be verified on inspection, since in $A_{n}, c_{i} c_{n}$ contains no component in $c_{j}, j \leqslant n-1$,

Theorem 2. The plane of unit weight in A_{n} may be mapped into a variety V_{n} lying in a space B_{n} (generally not of the same dimension as A_{n}) by a correspondence R,

$$
\left(1, u_{1}, \ldots, u_{n}\right) R=\left(1, v_{1}, \ldots, v_{m}\right)
$$

where

$$
\begin{equation*}
v_{i}=u_{i_{1}}^{k_{1}} u_{i_{2}}^{k_{2}} \ldots u_{i_{n}^{i_{n}}} \tag{6}
\end{equation*}
$$

in such a way that a linear transformation of B_{n} with matrix E_{n} can be found having the following properties:
(i) E_{n} operating on elements of unit weight in A corresponds to E_{n} operating on their images in B_{n}, in the sense that

$$
(x R) E_{n}=\left(x E_{n}\right) R .
$$

(ii) $\hat{\mathbb{E}}_{n}$ is upper triangular.
(iii) The proper value α_{i} of \hat{E}_{n} such that $(x R)\left(\hat{E}_{n}-\alpha_{i} I\right)$ has no component in v_{i} given by (6) is

$$
\left(2 \lambda_{0 i_{1} i_{1}}\right)^{k_{1}}\left(2 \lambda_{0 i_{2} i_{2}}\right)^{k_{2}} \ldots\left(2 \lambda_{0 i_{n} i_{n}}\right)^{k_{n}} .
$$

(iv) For general values of the $\lambda_{i j k}$, the dimension of B_{n} is minimal among spaces fulfilling these conditions.

Informally, $u_{n} E_{n}$ involves u_{n-1}^{2}. Hence if B_{n-1} has been found corresponding to A_{n-1}, and a mapping R given by (6), B_{n} will need to contain a dimension corresponding to each distinct product of powers given by multiplying pairs of expressions on the right of (6), and one corresponding to u_{n}. This involves a modified Kronecker square construction.

Proof. The results of $\S 3$ show that the thoerem is true for A_{1} and A_{2}. Suppose that it is true for A_{n-1}. Let us denote the elements of B_{n-1} by $\left(v_{0}, v_{1}, \ldots, v_{m^{\prime}}\right)$ and the elements of E_{n-1} by $d_{i j}, i, j=0, \ldots, m^{\prime}$. The required space B_{n} and matrix E_{n} will be constructed in two stages, the intermediate constructions being called \tilde{B} and \tilde{E}.

For \tilde{B} we take a space of dimension $m+1=\frac{1}{2}\left(m^{\prime}+1\right)\left(m^{\prime}+2\right)+1$. The first m coordinates are formed from the Kronecker square of B_{n-1}, that is they are the products $v_{i} v_{j}, i=0, \ldots, m^{\prime}$ and $j \geqslant i$, ordered so that $v_{r} v_{s}$ precedes $v_{k} v_{l}$ if either

$$
\begin{equation*}
r<k \text {, or } r=k, s<l \text {. } \tag{7}
\end{equation*}
$$

The ($m+1$)-th coordinate of \tilde{B} is $v_{m}=u_{n}$. This definition implies the mapping \tilde{R} of the unit plane of A_{n} into a variety in \tilde{B}. For the first m rows and columns of \tilde{E} we take the Kronecker square of \tilde{E}_{n-1}, which means that the element in the row corresponding to $v_{r} v_{s}$ is

$$
\begin{equation*}
d_{k r} d_{l s}+d_{k s} d_{l r} \tag{8}
\end{equation*}
$$

The $(m+1)$-th row and column of \tilde{E} are defined by

$$
\begin{gather*}
d_{m j}=0, \quad j=0, \ldots, m-1, \tag{9a}\\
d_{m m}=2 \lambda_{0 n n}, \tag{9b}
\end{gather*}
$$

$$
\left.\begin{array}{rlrl}
d_{k m} & =2 \lambda_{i j n}, & \text { if the } k \text {-th row of } \tilde{E} \text { expressed in terms of (6) } \tag{9c}\\
& & \text { corresponds to } u_{i} u_{j}, i \neq j \\
& =\lambda_{i i n}, & & \text { if the } k \text {-th row of } \tilde{E} \text { corresponds to } u_{i}{ }^{2} \\
& =0 & & \text { otherwise. }
\end{array}\right\}
$$

\mathbb{E} satisfies (ii) and (iii) of Theorem 2. Since \hat{E}_{n-1} is upper triangular by hypothesis, $d_{i j}=0$ if $i>j$. If $v_{r} v_{s}$ precedes $v_{k} v_{l}$ in the ordering given above, (7) and the inequality l>r which it implies lead to the conclusions that (8) is zero for elements below the main diagonal of \tilde{E}, and that the element in the row and column corresponding to $v_{k} v_{l}$ is $d_{k k} d_{l l}$. Since the matrix is upper triangular this is the proper value corresponding to $v_{k} v_{l}$ and the induction hypothesis then leads to the verification of (iii). The addition of the last row and column as defined by (9) clearly does not affect the validity of (ii) and (iii).

In general, when the v_{i} are expressed in terms of the u_{j} by (6), it will happen that $v_{k} v_{l}=v_{r} v_{s}$ for some k, l, r, s, say with the first member coming first in the established ordering. By what has been proved, the proper values in the row and column corresponding to each of these coordinates will be equal. For each occurrence of this type, add the row of \tilde{E} corresponding to $v_{r} v_{s}$ to that corresponding to $v_{k} v_{l}$, and delete the row and column corresponding to $v_{r} v_{s}$. Also delete the coordinate of \tilde{B} corresponding to $v_{r} v_{s}$. Clearly, this procedure does not affect conditions (ii) and (iii), its only effect on the set of proper values being to eliminate multiplicities. Further, since the last column of \tilde{E} has non-zero entries only for coordinates corresponding to $u_{i} u_{j}$, the elements of this column are not affected by the reduction procedure exept for relabeling of their row numbers. The results of the reduction procedure are the required space B_{n} and matrix E_{n}.

To prove that (i) is true for A_{n}, B_{n}, E_{n} and E_{n} consider the square of an element of unit weight $x \in A_{n}$, and let $x H$ be its image in the homomorphic mapping of A_{n} into the A_{n-1} corresponding to it, of Theorem 1 .

$$
\begin{align*}
x E_{n} & =\left(x H+u_{n} c_{n}\right)^{2} \\
& =(x H) E_{n-1}+\left\{2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n-1} \lambda_{i j n} u_{i} u_{j}+\sum_{i=1}^{n-1} \lambda_{i i n} u_{i}{ }^{2}+2 \lambda_{0 n n} u_{n}\right\} c_{n} \tag{10}
\end{align*}
$$

The first term, where E_{n-1} is an operator with domain and range A_{n-1}, shows that the appropriate transform of the first m coordinates of x is the Kronecker square of \hat{E}_{n-1}, reduced to allow for identities among the $v_{i} v_{j}$. The remainder of (10) shows that ($9 \mathrm{~b}, \mathrm{c}$) gives the required last column of E_{n}.

To prove that it is not in general possible to find a space of fewer dimensions in which a linear operator can be made to correspond to E_{n}, consider the square of an element of unit weight as given by (10) :

$$
u_{n} E_{n}=\lambda_{n-1, n-1, n} u_{n-1}^{2}+\ldots
$$

By hypothesis, $u_{n-1} E_{n-1}$ generates all the distinct products of powers of the u_{i} involved in the right-hand sides of (6). Hence

$$
u_{n-1}^{2} E_{n-1}=\left(u_{n-1} E_{n-1}\right)^{2}
$$

will generate those corresponding to distinct values of the $v_{i} v_{j}$. Hence after the reductions of the above paragraph, no further reduction of B_{n} is possible. This completes the proof.

For particular sets of the $\lambda_{i j k}$, spaces of smaller dimension than the B_{n} just constructed may satisfy the conditions of the theorem. An example is given in (iii) at the end of $\S 3$.

Theorem 3. Plenary powers in A_{n} form a train. The plenary train roots of A_{n} are included in the following set: the products taken in pairs of those of the A_{n-1} to which A_{n} corresponds in the homomorphism of Theorem 1, including squares, and $2 \lambda_{0 n n}$.

Proof. This follows from the relation between the proper values of a Kronecker square and those of its exponand, [8; vol. I, p. 75] together with ($9 \mathrm{a}, \mathrm{b}$) and the fact that the reduction procedure of Theorem 2 only removes superfluous multiplicities among the proper values.

5. Relations with previous work

Plenary train equations for algebras associated with specific genetic situations have been derived by Etherington [3,5], by the method of annulling polynomials. The method used here involves a formalisation of this. The idea of linearising the quadratic recurrence relationships arising in population genetics, between gametic frequencies at successive generations, by introducing polynomials in the frequencies which themselves satisfy linear equations, was used by Haldane [10] for polyploidy, and Bennett [1] for linked loci. Bennett's principal components correspond to the proper vectors of E_{n} here. In surveying their work, Moran [12; p. 38] asked under what conditions such a procedure was possible, and Theorem 3 provides a sufficient condition, namely that the genetic situation should correspond to a special train algebra. The restriction to quadratic functions which Moran mentions does not however seem possible for algebras of rank >4, and the impression that Haldane only required quadratics arises from the mistake in his algebra, which Moran has corrected [12; p. 41]. Reiersøl [13], like Bennett, dealt with the case of n linked loci in a recursive
way, making use of the genetic symmetry rather than transforming to a canonical basis. Reiersøl's method makes use of simultaneous homomorphisms onto algebras of considerably smaller dimension, where my method uses a single homorphism onto an algebra of dimension one fewer than that being studied.

I wish to thank the referee for his helpful criticisms.

References

1. J. H. Bennett, " On the theory of random mating ", Ann. Eugen., 18 (1954), 311-317.
2. I. M. H. Etherington, " On non-associative combinations " Proc. Roy. Soc. Edinburgh, 59 (1939), 153-162.
3. ——, "Genetic algebras ", Proc. Roy. Soc. Edinburgh, 59 (1939), 242-258.
4. ——, "Commutative train algebras of ranks 2 and 3 ", Journal London Math. Soc., 15 (1940), 136-148; 20 (1945), 238.
5. —_, "Special train algebras", Quart. J. of Math. (Oxford) (2), 12 (1941), 1-8.
6. -, "Duplication of linear algebras ", Proc. Edinburgh Math. Soc. (2), 6 (1941), 222-230.
7. _, "Non-associative algebra and the symbolism of genetics", Proc. Roy. Soc. Edinburgh B, 61 (1941), 24-42.
8. F. R. Gantmacher, The theory of matrices (trans. by K. A. Hirsch) (Chelsea: New York, 1959).
9. H. Gonshor, "Special train algebras arising in genetics", Proc. Edinburgh Math. Soc. (2), 12 (1960), 41-53.
10. J. B. S. Haldane, "Theoretical genetics of auto-polyploids ", J. Genetics, 22 (1930), 359-372.
11. P. Holgate, "Genetic algebras associated with polyploidy ", Proc. Edinburgh Math. Soc. (2), 15 (1966), 1-9.
12. P. A. P. Moran, Statistical processes of evolutionary theory (Oxford, 1962).
13. O. Reiersel, "Genetic algebras studied recursively and by means of differential operators ", Math. Scand., 10 (1962), 25-44.

Biometrics Section, The Nature Conservancy, 19 Belgrave Square, London, S.W. 1

