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1. Introduction

Certain non-associative algebras have important applications in-
theoretical Mendelian genetics. The following definitions and summary
of the theory are taken from papers by Etherington [2]-[7], who initiated
their study. A baric algebra is one which admits a non-trivial homo-
morphism, x-*a)(x), into its coefficient field. co(#) is called the weight of £.
In this paper we shall only be concerned with commutative algebras over
the real numbers. Clearly, the basis of a baric algebra may be so chosen
that one of its elements, say c0, has weight unity, and the remainder,
cv ...,cn have weight zero. The set of elements of unit weight is closed
with respect to multiplication, while the set of elements of zero weight is
an ideal N, the nil ideal.

In a non-associative system there is no unambigious k-th power of an
element. In genetic algebras the following sequences are important:
the principal powers xk, defined by

/ v » l _ _ /y» ey*/C — s\+rC — 1 />••

and the plenary powers x[® defined by

Let the rank equation connecting the principal powers of x be

xk + ax x
h~x +...+ ak_x x = 0.

In general the ai will depend on x, but if they depend on x only through
oi{x), the baric algebra is called a train algebra, of principal rank k. In
view of the baric property this condition is equivalent to requiring that
for each element of unit weight, the rank equation should have constant
coefficients, and the roots of the corresponding scalar equation

A*-1 + a1A*-a+...+afc_1 = 0

are called the principal train roots of the algebra.
A special train algebra is a baric algebra in which N is nilpotent, and all

the principal powers of N are ideals. Such an algebra is necessarily a
train algebra.

Suppose that in a train algebra a certain sequence of powers is of
interest, perhaps because of some genetic application. The question arises
as to whether this sequence also satisfies an equation of degree k', say,
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such that for elements of unit weight, the coefficients are constant. If so,
the sequence is said to be a train of order k', the equation is called the train
equation and the roots of the corresponding scalar equation the train roots
of the sequence, for the algebra.

Etherington showed [4], that all train algebras of ranks 1, 2 and 3 are
special train algebras, the plenary powers form trains, and determined
their plenary train roots. Reiers0l [13], proved that this result holds for
algebras corresponding to sets of n linked loci, and showed how the plenary
train roots may be computed by recursion with respect to n. In a previous
paper [11], I proved the same result for a class of algebras including those
corresponding to polysomic inheritance, and showed how their plenary
train roots could be computed. In this paper I show that the result holds
for all commutative special train algebras containing idempotent elements,
and show how the distinct values among their plenary train roots, and
upper bounds for their multiplicities may be obtained by recursion on the
dimension of the algebra.

2. Definitions

Let An denote the special train algebra over a space of dimension n — 1
whose basis in the canonical form obtained in [5] is c0, cls ..., cn, in which
a typical element of unit weight is

x = co + u1c1 + ...+uncn. (1)

Its multiplication table in the form given by Gonshor [9] is

where

]
(3a)

\m = 0, i,j>0 and k^max{i,j), )
The XQjj include the principal train roots, possibly with repetitions, and
may include \ even when it is not a principal train root. If An contains
an idempotent, it can be taken as c0, in which case

AOOA; = 0, &>0. (3b)

Conditions for this to be true are given by Gonshor. Henceforth we will
assume that the algebra does contain an idempotent. I t will often be
convenient, without introducing additional notation, to refer to x as a
row vector of coefficients, so tha t the element (1) is denoted by {l,uv ...,un)t

Let En be the operator on An which transforms x into a;2. I t will be written
on the right of the element operated on, to maintain consistency with
possible matrix representations, and it will often be equally convenient
to think of it as operating on the coefficients ut.



SEQUENCES OF POWERS IN GENETIC ALGEBRAS

3. Algebras of low rank

Ax has multiplication table

491

0 ,

and if Ao l l# | , its plenary train roots are 1, 2A011. If Aol] =£, unity is the
unique plenary train root (see [4]). To illustrate the method used in this
paper, let us determine the plenary train roots of A2 which has
multiplication table

co

Cl

c2

c0

co Ac

Cl

n ci + A012 c2

A 1 1 2 c 2

c2

A022C2

0

0

The square of an element of unit weight is

xE2 = x2 = cQ + 2A011 ux cx + (2A012 ux + A112 %
2 + 2A022

or expressed as a transformation of the u{;

)c2,

u2 E2 = 2A012 ux + A112 ux
2 + 2A022 u2.)

Let us now associate with A2 a space B2 of vectors (v0, vx, v2, v3), and
define a mapping B of the plane of unit weight in A2 into a variety F 2 in B2

by

( 1 , % , u2)B=(l,vx,v2, v3)

= (1, ux, ux
2, u2).

Ez induces a transformation $2 of the vi;

1 E2= 1,

v3 B2 = 2A012 vx + A112 v2 + 2A022 v3.

This can be extended to a linear transformation of the whole of B2 with
matrix

1 0 0 0
0 2A011 0 2A012

0 0 4AQ3

0 0 0

^ 2 =
/l112
2A022
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The operator E2 acting on elements of unit weight in A2 can now be seen
to correspond to $2 acting on their images in B2, in the sense that

(xE2)R={xR)fi2. (5)

Hence if f{$2) is a polynomial operator which annihilates B2, f{E2) will
annihilate A2. Hence the minimal polynomial of i^2 contains as a factor a
polynomial which corresponds to the plenary rank equation of A2. In
view of its upper triangular form, it can be seen that the proper values of
.$2> and hence the plenary train roots of A2, are included in the set 1, 2A01lJ

4A5nj 2A022.
If this set contains superfluous elements, which it will for certain

combinations of values of the Xijk, it is sometimes possible to modify
B2, V2, R and Ĵ 2 so that they are removed from the principal diagonal of
$2. For instance:

(i) If A011 = A022, 1\X\ is a n unrepeated plenary train root. Hence the
last coordinate of B2, and the last row and column of Ĵ 2 can be deleted.
(5), and the result, still hold.

(ii) If Ao22 = £, unity is an unrepeated plenary train root and a similar
modification can be made.

(iii) If A112 = 0, (4) shows that the images of elements of A2 will contain
no component in v2, which can therefore be deleted from B2 and the third
row and column from $2. In this case 4AQU is not a plenary train root.

(iv) However, if AO22 = 2Ao11, there is in general a genuine double
plenary train root.

These details may be verified by calculation.

4. Algebras of arbitrary rank

In connection with An we consider that special train algebra An_x

whose constants Xijk have the same values as those of An for
i,j, k = 0, 1, ...,n-l.

THEOREM 1. The correspondence H between A n and A n-1 determined by

(ic0, uv ..., un_v un)H={u0, ux, ..., un_x)

is a homomorphism.

Proof. This may be verified on inspection, since in An, cicn contains
no component in c.}, j ^ n — 1,

THEOREM 2. The plane of unit iveight in An may be mapped into a
variety Vn lying in a space Bn (generally not of the same dimension as An)
by a correspondence R,

(1 ,%, ...,un)R=(l,vv ...,vm),
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where vi — u\l u\\ ... ufy (6)

in such a way that a linear transformation of B.n ivith matrix ^n can be found
having the following properties:

(i) En operating on elements of unit weight in A corresponds to $n operating
on their images in Bn, in the sense that

(xR)fin=(xEn)R.

(ii) $n is upper triangular.

(iii) The proper value ô  of $n such that (xR) (Sn — c(.i I) has no component
in v{ given by (6) is

(iv) For general values of the Xijk, the dimension of Bn is minimal among
spaces fulfilling these conditions.

Informally, unEn involves u\_x. Hence if Bn_x has been found cor-
responding to An_x, and a mapping R given by (6), Bn will need to contain
a dimension corresponding to each distinct product of powers given by
multiplying pairs of expressions on the right of (6), and one corresponding
to un. This involves a modified Kronecker square construction.

Proof. The results of §3 show that the thoerem is true for Ax and A2.
Suppose that it is true for An_x. Let us denote the elements of Bn_x by
(v0, vx, ..., vm>) and the elements of $n_x by dijy i, j = 0,..., m'. The required
space Bn and matrix $n will be constructed in two stages, the intermediate

constructions being called B and E.

For B we take a space of dimension m +1 = \ (m' + 1) (m' + 2) + 1 . The
first m coordinates are formed from the Kronecker square of Bn_v that
is they are the products ^v3, i = 0, ...,m' axidj^i, ordered so that vrvs

precedes vk vl if either

r<k, or r = k, s<l. (7)

The (m+l)-th coordinate of B is vm = un. This definition implies the

mapping ft of the unit plane of An into a variety in B. For the first m rows
and columns of $ we take the Kronecker square of -^n_1, which means
that the element in the row corresponding to vr vs is

dkrdis + dksdlr. (8)
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The (m+ l)-th row and column of E are defined by

4u = 0» j = 0, . . . , m - l , (9a)

dmm = 2Knn> (9b)

dkm = 2Xijn, if the k-th row of E expressed in terms of (6) ^
corresponds to ut ui3 i ^j . .

= X^in, ifthe^-th row oiE corresponds to u^
= 0 otherwise. >

E satisfies (ii) and (iii) of Theorem 2. Since En_x is upper triangular by
hypothesis, dy = Oifi>j. If vr vs precedes vk vt in the ordering given above,
(7) and the inequality 1 > r which it implies lead to the conclusions that (8)
is zero for elements below the main diagonal of E, and that the element in
the row and column corresponding to vkvt is dkkdn. Since the matrix
is upper triangular this is the proper value corresponding to v,^ and the
induction hypothesis then leads to the verification of (iii). The addition
of the last row and column as defined by (9) clearly does not affect the
validity of (ii) and (iii).

In general, when the vt are expressed in terms of the ui by (6), it will
happen that vkvt = vrvs for some k, I, r, s, say with the first member coming
first in the established ordering. By what has been proved, the proper
values in the row and column corresponding to each of these coordinates
will be equal. For each occurrence of this type, add the row of E cor-
responding to vrv8 to that corresponding to vkvb and delete the row and

column corresponding to vr va. Also delete the coordinate of B corresponding
to vrvs. Clearly, this procedure does not affect conditions (ii) and (iii),
its only effect on the set of proper values being to eliminate multiplicities.
Further, since the last column of E has non-zero entries only for co-
ordinates corresponding to u{uj} the elements of this column are not
affected by the reduction procedure exept for relabeling of their row
numbers. The results of the reduction procedure are the required space
Bn and matrix fin.

To prove that (i) is true for An, Bn, En and J@n consider the square of an
element of unit weight xeAn, and let xH be its image in the homomorphic
mapping of An into the An_x corresponding to it, of Theorem 1.

(10)= (xH) En_x + (2IS1 ' s 1 Xiin u, ut +
 n£xiin u? + 2X0nn un)

I i=l j=i+l i=l )

The first term, where En_x is an operator with domain and range An_v

shows that the appropriate transform of the first m coordinates of x is the
Kronecker square of En_v reduced to allow for identities among the ^v,-.
The remainder of (10) shows that (9b, c) gives the required last column
of ^ . .
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To prove that it is not in general possible to find a space of fewer
dimensions in which a linear operator can be made to correspond to En,
consider the square of an element of unit weight as given by (10):

un En = ^7i-l, n-1, n un-\ + • • • •

By hypothesis, un_x En_x generates all the distinct products of powers
of the ut involved in the right-hand sides of (6). Hence

will generate those corresponding to distinct values of the v^y Hence
after the reductions of the above paragraph, no further reduction of Bn

is possible. This completes the proof.
For particular sets of the Xijk, spaces of smaller dimension than the Bn

just constructed may satisfy the conditions of the theorem. An example
is given in (iii) at the end of §3.

THEOREM 3. Plenary powers in An form a train. The plenary train
roots of An are included in the following set: the products taken in pairs of
those of the An_1 to which An corresponds in the homomorphism of Theorem 1,
including squares, and 2A0nn.

Proof. This follows from the relation between the proper values of a
Kronecker square and those of its exponand, [8; vol. I, p. 75] together
with (9a, b) and the fact that the reduction procedure of Theorem 2 only
removes superfluous multiplicities among the proper values.

5. Relations with previous work

Plenary train equations for algebras associated with specific genetic
situations have been derived by Etherington [3,5], by the method of
annulling polynomials. The method used here involves a formalisation
of this. The idea of linearising the quadratic recurrence relationships
arising in population genetics, between gametic frequencies at successive
generations, by introducing polynomials in the frequencies which them-
selves satisfy linear equations, was used by Haldane [10] for polyploidy,
and Bennett [1] for linked loci. Bennett's principal components correspond
to the proper vectors of $n here. In surveying their work, Moran [12; p. 38]
asked under what conditions such a procedure was possible, and Theorem 3
provides a sufficient condition, namely that the genetic situation should
correspond to a special train algebra. The restriction to quadratic functions
which Moran mentions does not however seem possible for algebras of
rank > 4, and the impression that Haldane only required quadratics arises
from the mistake in his algebra, which Moran has corrected [12 ; p. 41].
Reiersol [13], like Bennett, dealt with the case of n linked loci in a recursive
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way, making use of the genetic symmetry rather than transforming to a
canonical basis. Reiers0l's method makes use of simultaneous homo-
morphisms onto algebras of considerably smaller dimension, where my
method uses a single homorphism onto an algebra of dimension one fewer
than that being studied.

I wish to thank the referee for his helpful criticisms.
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